
1

STATE IN THE
STATELESS  
WORLD

@lmuzinic
Luka Mužinić

bit.ly/phpsrbija-codementor

3

WHY WE
NEED
STATE?

4

THE PROBLEM

Our entities can have life of their own,
they start out one way and then after
series of events they end up different.

We want to store that information.

STATUS OF ENTITIES

5

EASY PEASY

JUST ADD A PROPERTY

/**
 * @var string
 */
private $status;

/**
 * @return string
 */
public function getStatus()
{
 return $this->status;
}

/**
 * @param string $status
 */
public function setStatus($status)
{
 $this->status = $status;
}

6

EASY PEASY

JUST CHANGE A PROPERTY AND SAVE IT

$em = $this->getDoctrine()->getManager();
$rep = $em->getRepository(Entity::class);

$entity = $rep->find(1);

$entity->setStatus('paid');

$entityManager->flush();

7

“Support can
promote users if

they have
verified their

email address”

“Warehouse
should not ship
customer orders
until they have
been fully paid”

“I should be able
to publish an

article  
only after lector  

says it is OK”

BUT THERE ARE ALSO SOME BUSINESS RULES

8

HOW TO ADD  
BUSINESS  
RULES?
There must be a clever way to include
business rules in our system.

9

STATE PATTERN

Allow an object to alter its behaviour
when its internal state changes. The
object will appear to change its class.

INTENT

http://wiki.c2.com/?StatePattern

10

STATE PATTERN

The State pattern can be used, for
instance, to implement a Finite State
Machine efficiently and elegantly. This
approach can be useful when
implementing business processes or
workflows.

USAGE

https://github.com/sebastianbergmann/state

12

Start off with a simple interface listing all possible transitions

STATE PATTERN
interface UserState
{
 public function verify();

 public function flag();

 public function ban();

 public function lock();

 public function clear();
}

13

Make all transitions throw  
exceptions by default

STATE PATTERN
abstract class AbstractUserState implements UserState
{
 public function verify()
 {
 throw new IllegalStateTransitionException;
 }

 public function flag()
 {
 throw new IllegalStateTransitionException;
 }

 public function ban()
 {
 throw new IllegalStateTransitionException;
 }

 public function lock()
 {
 throw new IllegalStateTransitionException;
 }

 public function clear()
 {
 throw new IllegalStateTransitionException;
 }
}

14

Define states as factories to
other states

STATE PATTERN
class RegisteredUserState extends AbstractUserState
{
 public function verify()
 {
 return new VerifiedUserState;
 }
}

15

STATE PATTERN
class VerifiedUserState extends AbstractUserState
{
 public function flag()
 {
 return new FlaggedUserState;
 }
}

STATE PATTERN
class FlaggedUserState extends AbstractUserState
{
 public function lock()
 {
 return new LockedUserState;
 }

 public function ban()
 {
 return new BannedUserState;
 }
}

17

Add state to your entity

STATE PATTERN
class User
{
 private $state;

 public function __construct(UserState $state)
 {
 $this->setState($state);
 }

 private function setState(UserState $state)
 {
 $this->state = $state;
 }

 public function verify()
 {
 $this->setState($this->state->verify());
 }

 public function isVerified()
 {
 return $this->state instanceof VerifiedUserState;
 }
}

18

class RegisteredUserTest extends TestCase
{
 /** @var \App\Entity\User */
 private $user;

 public function setUp()
 {
 $this->user = new User('Miro Svrtan');
 $this->user->setState(new RegisteredUserState());
 }

TESTING STATE PATTERN

19

class RegisteredUserTest extends TestCase
{
 public function testBecomesVerified()
 {
 $this->user->verify();

 $this->assertTrue(
 $this->user->isVerified()
);
 }

 public function testCanNotBeFlagged()
 {
 $this->expectException(IllegalStateTransitionException::class);

 $this->user->flag();
 }
}

TESTING STATE PATTERN

20

~ bin/phpunit --testdox
PHPUnit 6.5.8 by Sebastian Bergmann and contributors.

App\Tests\RegisteredUser
 [x] Becomes verified
 [x] Can not be flagged
 [x] Can not be locked
 [x] Can not be banned

TESTING STATE PATTERN

21

BUT MY ENTITIES  
ARE ALREADY BIG!

Shoving all that inside your entity makes
them fat.

22

IS THERE A  
BETTER  
WAY?

23

STATE MACHINES
DEFINING STATES AND ALLOWED TRANSITIONS BETWEEN THEM

24

STATE MACHINES PACKAGES
composer require symfony/workflow

composer require winzou/state-machine

composer require yohang/finite

Pick one

25

SYMFONY WORKFLOW CONFIG

workflows:
 user:
 type: 'workflow'
 marking_store:
 type: 'single_state'
 arguments:
 - 'status'
 supports:
 - App\Entity\User
 places:
 - registered
 - verified
 - flagged
 - banned
 - locked

26

SYMFONY WORKFLOW CONFIG

workflows:
 user:
 transitions:
 verify:
 from: registered
 to: verified
 flag:
 from: verified
 to: flagged
 ban:
 from: flagged
 to: banned
 lock:
 from: flagged
 to: locked
 clear:
 from: [banned, flagged]
 to: verified

27

SYMFONY WORKFLOW USAGE
$user = new AppBundle\Entity\User();

$stateMachine = $this->container->get('state_machine.user');

if ($stateMachine->can($user, 'ban')) {
 $stateMachine->apply($user, 'ban');
}

Focus on what needs to be done, not if it can be done!

28

SYMFONY WORKFLOW EVENTS
class Workflow
{
 public function __construct(
 Definition $definition,
 MarkingStoreInterface $markingStore = null,
 EventDispatcherInterface $dispatcher = null,
 $name = 'unnamed'
)

...

Cool, EventDispatcher is there!

29

SYMFONY WORKFLOW EVENTS

workflow.guard
workflow.[workflow name].guard
workflow.[workflow name].guard.[transition name]

GUARD

$stateMachine->can($user, 'ban');

30

SYMFONY WORKFLOW EVENTS
class UserSubscriber implements EventSubscriberInterface
{
 public function guardBan(GuardEvent $guardEvent)
 {
 /** @var \App\Entity\User $user */
 $user = $guardEvent->getSubject();

 if ($user->isModerator()) {
 $guardEvent->setBlocked(true);
 }
 }

 public static function getSubscribedEvents()
 {
 return [
 'workflow.user.guard.ban' => ['guardBan']
];
 }
}

Block it if necessary!

31

SYMFONY WORKFLOW EVENTS

workflow.leave
workflow.[workflow name].leave
workflow.[workflow name].leave.[transition name]

LEAVE

workflow.transition
workflow.[workflow name].transition
workflow.[workflow name].transition.[transition name]

TRANSITION

workflow.enter
workflow.[workflow name].enter
workflow.[workflow name].enter.[transition name]

ENTER

workflow.announce
workflow.[workflow name].announce
workflow.[workflow name].announce.[transition name]

ANNOUNCE

workflow.entered
workflow.[workflow name].entered
workflow.[workflow name].entered.[transition name]

ENTERED

workflow.completed
workflow.[workflow name].completed
workflow.[workflow name].completed.[transition name]

COMPLETED

$stateMachine->apply($user, 'ban');

32

{% if workflow_can(user, 'ban') %}
 ban
{% endif %}

SYMFONY WORKFLOW IN TEMPLATES

33

SYMFONY WORKFLOW DUMP

| dot -Tpng -o graph.png

| java -jar plantuml.jar -p > graph.png

$ bin/console workflow:dump user

34

SYMFONY WORKFLOW TEST COVERAGE
class RegisteredUserTest extends KernelTestCase
{
 /** @var \Symfony\Component\Workflow\Workflow */
 private static $workflow;

 /** @var \App\Entity\User */
 private $user;

 public static function setUpBeforeClass()
 {
 static::bootKernel();
 static::$workflow = static::$kernel->getContainer()->get('workflow.user');
 }

 public function setUp()
 {
 $this->user = new User('Miro Svrtan');
 $this->user->setStatus('registered');
 }

35

SYMFONY WORKFLOW TEST COVERAGE
public function testCanBeVerified()
{
 $this->assertTrue(
 static::$workflow->can($this->user, 'verify')
);
}

public function testBecomesVerified()
{
 /** @var Marking $verified */
 $verified = static::$workflow->apply($this->user, 'verify');

 $this->assertTrue(
 $verified->has('verified')
);
}

public function testCanNotBeFlagged()
{
 $this->expectException(NotEnabledTransitionException::class);

 static::$workflow->apply($this->user, 'flag');
}

36

SYMFONY WORKFLOW TEST COVERAGE
~ bin/phpunit --testdox
PHPUnit 6.5.8 by Sebastian Bergmann and contributors.

App\Tests\RegisteredUser
 [x] Can be verified
 [x] Becomes verified
 [x] Can not be flagged
 [x] Can not be locked
 [x] Can not be banned

37

POSSIBLE USAGES

enable/disable
open/closed

BINARY

character levels (peasant, beginner, warrior, lord)
action state (running, jumping)

GAMES

articles (draft, approved, published, archived)

PUBLISHING

subscriptions (active, pending renewal, expired)
order (ordered, shipped, canceled, returned, refunded)

PAYMENTS

38

USAGES IN THE WILD
sylius/sylius using winzou/state-machine

So far the list is short

39

Leave a paper
trail

Treat them
same as

serialising

Discuss it with
your team/client

TIPS AND TRICKS

40

Testing
becomes 

(little) complex

Coupling with
framework/

library

DOWNSIDES

41

FINITE STATE MACHINES

#	JS	
npm	install	javascript-state-machine	

#	Python	
pip	install	transitions	

#	Ruby	
gem	install	state_machine	

#	PostgreSQL 
http://felixge.de/2017/07/27/implementing-state-
machines-in-postgresql.html	

42

WHAT DID  
WE  
LEARN?

43

State machines are cool

STATE PATTERN

The object will appear to
change its class.

Look at
sebastianbergmann/state  
as an excellent example of

state pattern.

STATE MACHINES

Do not reinvent the wheel,  
use available packages if

possible.  
 

Test them as every other
piece of code. 

 
Enforce their usage
throughout project.

STORE STATE SOMEWHERE

Models are good for storing
state and bad for business

logic how to transition
between states. 

 
Group that logic in one place,
if possible. Preferably through

state machines.

RECAP

44

QUESTIONS?

luka.muzinic.net/talks@lmuzinic
Luka Mužinić bit.ly/phpsrbija-codementor

October 5th & 6th 2018
2018.webcampzg.org

