
1

STATE IN THE
STATELESS  
WORLD

2

Working in a remote team of three software engineers, able to offer outsourcing and consulting services,
leadership of development teams and code reviews. Managing everything from application architecture to
infrastructure. Delivering projects that are documented, covered with tests, with automated provisioning of local
development virtual machines and production servers.

@lmuzinic
Luka Muzinic

HELLO

3

WHY WE
NEED
STATE?

4

THE PROBLEM

Our entities can have life of their own, they
start out one way and then after series of
events they end up different. We want to
store that information.

STATUS OF ENTITIES

5

EASY PEASY

JUST ADD A PROPERTY

/**
 * @var string
 */
private $status;

/**
 * @return string
 */
public function getStatus()
{
 return $this->status;
}

/**
 * @param string $status
 */
public function setStatus($status)
{
 $this->status = $status;
}

6

EASY PEASY

JUST CHANGE A PROPERTY AND SAVE IT

$em = $this->getDoctrine()->getManager();
$rep = $em->getRepository(‘AppBundle:Entity’);
$entity = $rep->find(1);

$entity->setStatus('paid');

$entityManager->flush();

7

“Support can
promote users if

they have verified
their email
address”

“Warehouse
should not ship

customer orders
until they have
been fully paid”

“I should be able
to publish an

article  
only after lector  

says it is OK”

BUT THERE ARE ALSO SOME BUSINESS RULES

8

HOW TO ADD  
BUSINESS  
RULES?
There must be a clever way to include
business rules in our system.

9

STATE PATTERN

Allow an object to alter its behaviour when
its internal state changes. The object will
appear to change its class.

INTENT

http://wiki.c2.com/?StatePattern

10

STATE PATTERN

The State pattern can be used, for instance,
to implement a Finite State Machine
efficiently and elegantly. This approach can
be useful when implementing business
processes or workflows.

USAGE

https://github.com/sebastianbergmann/state

11

Start off with a simple interface listing all possible transitions

STATE PATTERN
interface DoorState
{
 public function open();

 public function close();

 public function lock();

 public function unlock();
}

12

Make all transitions throw  
exceptions by default

STATE PATTERN
abstract class AbstractDoorState implements DoorState
{
 public function open()
 {
 throw new IllegalStateTransitionException;
 }

 public function close()
 {
 throw new IllegalStateTransitionException;
 }

 public function lock()
 {
 throw new IllegalStateTransitionException;
 }

 public function unlock()
 {
 throw new IllegalStateTransitionException;
 }
}

13

Define states as factories to
other states

STATE PATTERN
class LockedDoorState extends AbstractDoorState
{
 public function unlock()
 {
 return new ClosedDoorState;
 }
}

class ClosedDoorState extends AbstractDoorState
{
 public function open()
 {
 return new OpenDoorState;
 }

 public function lock()
 {
 return new LockedDoorState;
 }
}

14

Add state to your entity

STATE PATTERN
class Door
{
 private $state;

 public function __construct(DoorState $state)
 {
 $this->setState($state);
 }

 public function open()
 {
 $this->setState($this->state->open());
 }

 public function isOpen()
 {
 return $this->state instanceof OpenDoorState;
 }

...

 private function setState(DoorState $state)
 {
 $this->state = $state;
 }
}

15

BUT MY ENTITIES  
ARE ALREADY BIG!

Showing all that inside your entity makes
them fat.

16

IS THERE A  
BETTER  
WAY?

17

Defining states and allowed transitions between them

STATE MACHINES

18

STATE MACHINES PACKAGES
composer require symfony/workflow

composer require winzou/state-machine

Pick one

19

SYMFONY WORKFLOW CONFIG
framework:
 workflows:
 workload:
 type: 'state_machine'
 marking_store:
 type: 'single_state'
 arguments:
 - status
 supports:
 - AppBundle\Entity\Workload
 places:
 - created
 - running
 - finished
 - failed
 transitions:
 start:
 from: created
 to: running
 finish:
 from: running
 to: finished
 fail:
 from: [created, running]
 to: failed

20

SYMFONY WORKFLOW USAGE
$workload = new AppBundle\Entity\Workload();

$stateMachine = $this->container->get('state_machine.workload');

if ($stateMachine->can($workload, 'start')) {
 $stateMachine->apply($workload, 'start');
}

Focus on what needs to be done, not if it can be done!

21

SYMFONY WORKFLOW EVENTS
class Workflow
{
 public function __construct(
 Definition $definition,
 MarkingStoreInterface $markingStore = null,
 EventDispatcherInterface $dispatcher = null,
 $name = 'unnamed'
)

...

Cool, EventDispatcher is there!

22

SYMFONY WORKFLOW EVENTS
class WorkloadSubscriber implements EventSubscriberInterface
{
 public function guardStart(GuardEvent $guardEvent)
 {
 ...

 $guardEvent->setBlocked(true);
 }

 public static function getSubscribedEvents()
 {
 return [
 'workflow.workload.guard.start' => ['guardStart']
];
 }
}

Block it if necessary!

23

SYMFONY WORKFLOW EVENTS

workflow.guard
workflow.[workflow name].guard
workflow.[workflow name].guard.[transition name]

GUARD

workflow.leave
workflow.[workflow name].leave
workflow.[workflow name].leave.[transition name]

LEAVE

workflow.transition
workflow.[workflow name].transition
workflow.[workflow name].transition.[transition name]

TRANSITION

workflow.enter
workflow.[workflow name].enter
workflow.[workflow name].enter.[transition name]

ENTER

workflow.announce
workflow.[workflow name].announce
workflow.[workflow name].announce.[transition name]

ANNOUNCE

24

{% if workflow_can(workload, 'fail') %}
 stop
{% endif %}

SYMFONY WORKFLOW IN TEMPLATES

25

SYMFONY WORKFLOW TEST COVERAGE

bash-4.3# vendor/bin/phpunit --testdox

s\AppBundle\Workload\Running
 [x] Workload can not start
 [x] Workload can finish
 [x] Workload can fail

public function testWorkloadCanNotStart()
{
 $result = $this->stateMachine->can($this->workload, 'start');
 $this->assertFalse($result);
}

public function testWorkloadCanFinish()
{
 $result = $this->stateMachine->can($this->workload, 'fail');
 $this->assertTrue($result);
}

public function testWorkloadCanFail()
{
 $result = $this->stateMachine->can($this->workload, 'finish');
 $this->assertTrue($result);
}

26

POSSIBLE USAGES

enable/disable
open/closed

BINARY

character levels (peasant, beginner, warrior, lord)
action state (running, jumping)

GAMES

articles (draft, approved, published, archived)

PUBLISHING

subscriptions (active, pending renewal, expired)
order (ordered, shipped, canceled, returned, refunded)

PAYMENTS

27

WHAT DID  
WE  
LEARN?

28

State machines are cool

STATE PATTERN

The object will appear to
change its class.

Look at sebastianbergmann/
state as an excellent example

of state pattern.

STATE MACHINES

Do not reinvent the wheel,  
use available packages if

possible.  
 

Test them as every other piece
of code. 

 
Enforce their usage throughout

project.

STORE STATE SOMEWHERE

Models are good for storing
state and bad for business logic

how to transition between
states. 

 
Group that logic in one place, if

possible. Preferably through
state machines.

RECAP

29

simple examples of usages
- enable/disable
- game characters (advancing according to points)

30

@lmuzinic
Luka Muzinic

QUESTIONS?

luka.muzinic.net/talks

31

KTHXBAI

